

A look to the first two years of the Turing scheme in higher education

Joan-Anton Carbonell

June 2025

After the result of the Brexit referendum of 2016, negotiations started to agree the terms of the withdrawal of the United Kingdom from the European Union. A final deal was signed on December 24th, 2020, which included the UK's decision not to participate in the new Erasmus + programme (2021-2027). The same day, Boris Johnson, the UK Prime Minister, announced the creation of a new mobility programme funded by the government and named after computer pioneer Alan Turing. The new programme had been in a preparatory phase for some months, as a 'plan B' in case the decision to leave Erasmus+ was taken. *Fox and Beech (2024)*¹ wrote about the intentions behind the creation of the new programme and the positions taken in Parliament by the different parties involved.

The reasons for the decision to leave Erasmus were not entirely explained at the time. Despite Johnson assuring MPs there was "no threat to the Erasmus scheme" in January 2020, the position had changed in December the same year, although Johnson said, "...*On Erasmus, it was a tough decision...*". He also claimed the UK "*loses out*" financially because of the larger number of EU nationals coming to study in the UK². Sometime later, Nick Leake, senior diplomat at the U.K. Mission, said that '*London expected to pay in nearly €300 million more a year than it received back...*' and '*...The interest of the UK taxpayer is why we decided not to participate in Erasmus+...*'³. This statement contradicted the opinion of Universities UK International (UUKI) which, in March 2020, stated that membership of Erasmus gave a bonus to the British economy worth £243m a year, after subtracting membership costs from the £420m generated by EU students visiting the UK under the programme⁴.

The preparations for the first year of the new scheme were accelerated and the Programme Guide for 2021-22 was published as soon as March 2021 with a first call for applications expected for the following month. The British Council was selected to manage the first year of Turing following the directions set by the Department for Education (DfE). From the perspective of the higher education institutions, the new scheme was seen as a complement to the remaining Erasmus contracts still valid for most institutions until 2021-22 or even 2022-23. In fact, 119 institutions still sent a significant number of students abroad with Erasmus in 2021-22 and 96 used the remaining funds in 2022-23, thanks to the extension of the contracts granted by the European Commission in 2020 because of the pandemic. The extensions made Turing and Erasmus + run simultaneously for two academic years and thus reduces the possibilities of evaluating the impact of Turing in outgoing student mobility in its first two years.

It took some time to have the first analysis of Turing from an academic perspective. *With links to European policies or the need of helping more disadvantaged students to go abroad*, authors such as Johanna L Walters and Polly Nash⁵ were mostly critical of the new scheme and the results of its first calls. The House of Commons also published a briefing (2023) where the reaction of political parties and the higher education sector were reported. These were not always positive. In August 2021, Matt Western, the Shadow Further Education and Universities Minister at the time, said in Parliament: '*...Boris Johnson has yet again created confusion for students and chaos for providers, by breaking his promise to keep the UK in the Erasmus+ programme. Subjecting the Turing Scheme to future spending decisions will create financial uncertainty for organisations and young people. It's being reduced to the status of Erasmus minus...*'. Liberal Democrats, in a motion passed at the party's autumn 2021

conference called on the government to, among other issues, '*...ensur(e) the same level of funding is available as under Erasmus+...*'⁶.

From the beginning, the Turing scheme offered funding to three educational sectors: higher education, further Education/VET and schools. To allow comparisons with previous years, the present research covers only the higher education sector. It is important to also highlight that this is not an academic paper in the sense that there is no full literature review and only concrete remarks to Turing and its development have been included and referenced at the end. The rest of the information has been gathered and extrapolated from the data received from HESA, the Department for Education (DfE) on the total number of students participating and the higher education institutions who have been part of the scheme.

The first year of the Turing scheme (2021-22)

The consequences of the pandemic were still visible and relevant during the first year of Turing. Visa restrictions applied to the United States, Canada and Australia, among other countries, during the first months of implementation. In addition, the preventive requirements of Covid discouraged some candidates or caused some students to divert to other destinations. This helps to explain why, instead of the 31,887 participants expected from the approved projects, only 13,785 higher education students benefited from Turing in the first year. This represents only 43.2% of the expected number of participants and 47% of the allocated budget for higher education.

A total of 146 higher education institutions sent students abroad in 2018-19 with Erasmus, the last year with normal figures before the pandemic. According to the official figures published by the DfE⁷, only 139 institutions applied for the first year of Turing funding in 2021-22 and this was a first indication of the difficulties that Turing would have to face as the replacement of Erasmus.

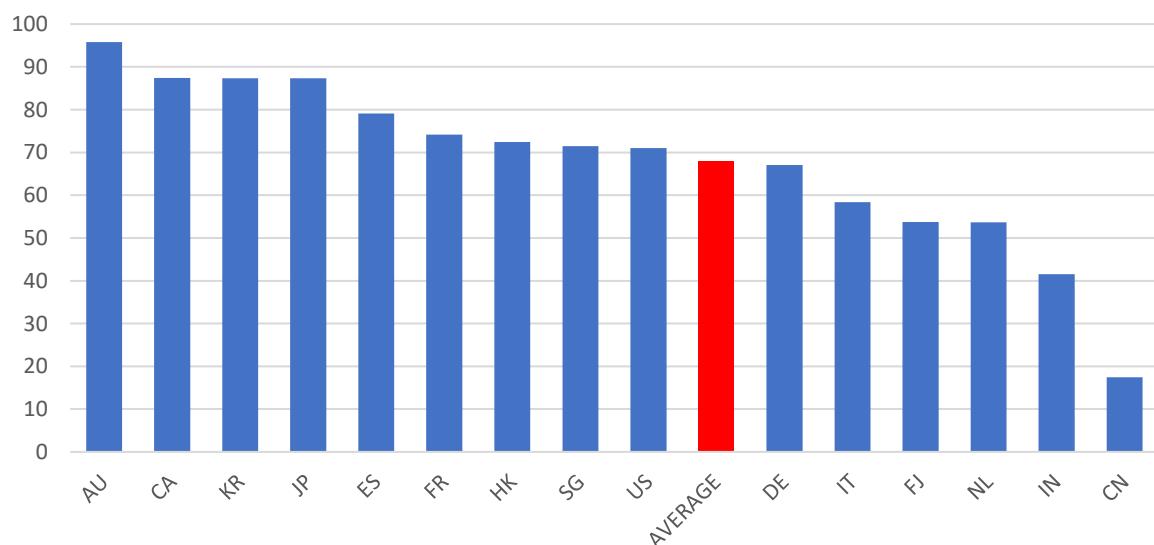
In part because of the concurrent overlap with Erasmus, the weight of Turing in outgoing student mobility was lower than expected in its first year. The figures of total mobility show that 44% of undergraduate students going abroad received Turing funding, 22% of postgraduate and, in total, Turing represented 41% of student mobility. One third of mobile students received Erasmus support and 26% of the students going abroad did not participate in either of the two programmes.

An evaluation of the first year of Turing was published in January 2024⁸. It was made by IFF Research through a census telephone survey to participating institutions, an online survey to participants and some interviews to non-participating providers. Surprisingly, the research did not consider actual numbers of participants but only the responses provided by institutions and participants. A first conclusion was that most respondents (79%) expressed the difficulties and requirements of the application process due to the complexity of student mobility expectations. In addition, the time lapse between the application process for students and the confirmation of the funding created difficulties for widening participation students, as the funding was confirmed only after students had made all travel arrangements or had withdrawn from the process due to the uncertainty.

Just above half of the higher education institutions considered that volume of placements offered through Turing Scheme was higher than those through Erasmus. Despite this, 48% of the institutions said that COVID-19 had an impact on the delivery of international placement opportunities. And 54% considered that the funding provided on Year 1 of the Turing Scheme was satisfactory. A different perception was shown when reporting on how difficult providers found it to achieve their target number of mobilities for participants from disadvantaged backgrounds with only 25% declaring it was fairly or very easy. The level of satisfaction of participants was, in general, very high with only

dissatisfaction expressed about the funding received and the percentage of expenses covered by the programme, with 15% saying that it only covered very little of the costs and 40% that it covered some of the costs.

The research produced very interesting outcomes despite it only being based on the responses provided by 54% of the participating higher education institutions. The research also provided a good solid view on the implementation of the programme in the first year, particularly by considering the opinion of institutions and individuals participating in the programme.


The current report provides the analysis of the data of participants, i.e. who went abroad with Turing, where they went, for how long, from where and their academic background.

Changes in the second year of Turing (2022-23)

There has not been any research done yet on the second year of Turing. In addition, the closure of the official website of the programme (www.turing-scheme.org.uk) enormously reduced the level of information available, with official data only provided from the website of the Department for Education which is mostly based on the future developments rather than on figures from previous editions⁹.

The second call for applications followed similar characteristics to those of the first year. The number of higher education applications grew to 150 (eleven more than in the first year), but only 131 were successful. This represented that 18 fewer institutions participated in Turing in 2022-23. The approved budget was of £62.1 million (five million less than the year before), to fund 23,472 students (9,000 fewer) from which 51.64% were expected to be from a disadvantaged background. The figures did not show a positive trend for a substantial increase of mobility. The improvement of the external post-COVID conditions allowed a higher number of participants (15,892 in 2022-23) but this still only represented 68% of the mobility expected from approved applications.

Table 1: Percentage of actual participants compared to approved mobility in 2022-23¹⁰

The actual mobility achieved the highest percentages in the cases of Australia, Canada, South Korea and Japan (countries not covered by Erasmus) and the lowest percentage (within the twenty first top

destinations) for the Netherlands, India and China showing that the potential mobility of the last two countries was clearly overestimated. This is an example of the effect of the timing of the applications (April 2022) for mobility that could happen at any time between September 2022 and August 2023.

At undergraduate level, 48% of students going abroad benefited from Turing and 17% from Erasmus. Together, they made 65% of undergraduate mobility, 13% less than the year before. At postgraduate level, Turing represented 20% of the total mobility and with Erasmus 24%, 5% lower than the year before. Looking at the total number of students going abroad, Turing funded 45% of the mobility, 4% higher than in 2021-22.

Comparing the institutions participating in 2022-23 with those the year before, 118 institutions sent students abroad with Turing both years, 16 only in 2021-22 and 14 were new in 2022-23.

An important change of the second year was the decision taken by the Department for Education, after a tender process, to award the management of the scheme to Capita, instead of the British Council who had overseen Turing from the beginning¹¹. The change was implemented in March 2022 and represented a new obstacle with institutions having to adapt to new requirements and staff.

Characteristics of the Turing students

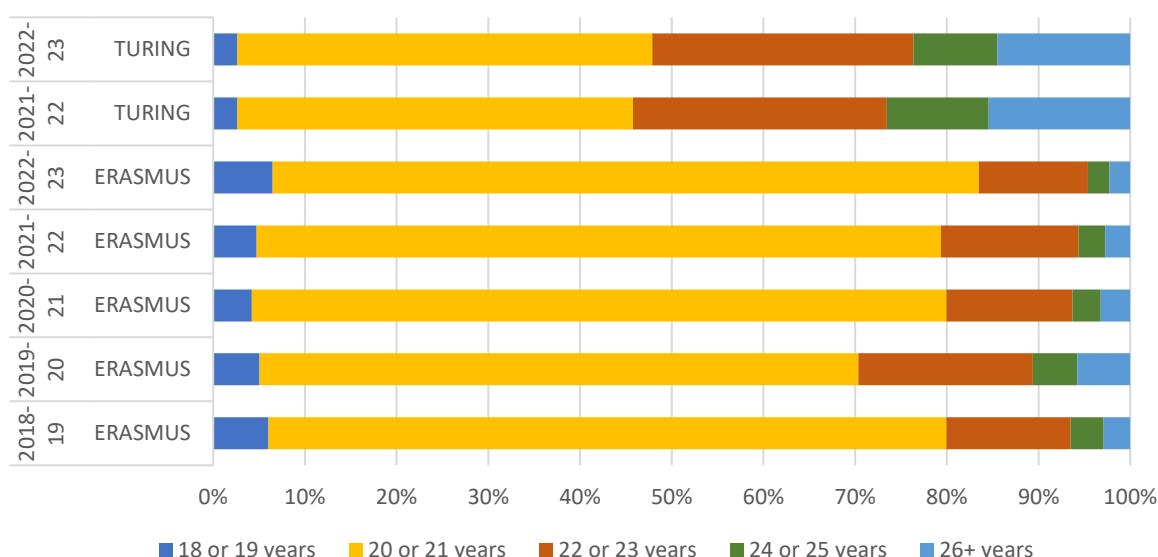
The characteristics of the Turing students have not been made public before. The current research analyses the data obtained from the HESA return, the Department for Education and the institutions participating who kindly sent detail of their participants (excluding personal data). The result is a variable level of information from approximately 29,677 students who participated in the Turing scheme in its first two years. In concrete, the information has been gathered with the following percentages:

Home institution, Gender, Level of studies,	
days abroad and type of activity	100%
Nationality	99.6%
Country of destination	98.3%
Course or area of studies	93.8%
Dates of mobility	64.7%
Ethnic origin	29.7%
Age	9.3%

The home institution will be discussed later in the report. The other characteristics are analysed by comparing the first two years and, in some cases, with the data available for participants in the Erasmus programme, from the information provided by the European Commission and the UK Erasmus+ National Agency.

a) Gender

The distribution of gender in student mobility has shown similar percentages for years. In general, two female students go abroad for each male student. In recent years, official statistics also include a third group for those students defining themselves as 'other' or 'prefer not to say'. Their number has been growing every year but still represent a very small percentage of the students going abroad with only 0.37% of the total. The distribution of Turing students reflects this historical trend. The percentage of female students was of 65% in 2021-22 and 66.4% in 2022-23. Male students went from representing


34.7% to 33.1% with the 'other' students representing 0.3 and 0.5% in 2021-22 and 2022-23 respectively. Thus, Turing followed the same trend as other mobility initiatives, and that was confirmed by the demographics of the first year of the scheme published by the DfE in 2023¹².

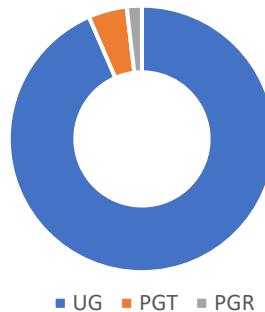
b) Age

The age of participants is one of the private data that institutions have been more reserved about. It is considered that disclosing the age helps identifying students and, as a result, the level of data received is lower than for other characteristics of students.

As expected, most of undergraduate students were between 18 and 21 years old when going abroad. This was also the norm for Erasmus students. With the only exception of 2019-20, students between 18 and 21 years old represented a minimum of 80% of the student mobility. Students older than 26 years old were always around 3% of the total with the exception, again, of the 2019-20 academic year.

Table 2: Age of students when going abroad (from 2018-19 to 2022-23)

With all the reservations mentioned before, Table 2 shows that Turing students were, on average, older than those going abroad with Erasmus. In the first two years, that was by a large difference because those under 21 years old did not make up 50% of mobility participants, a surprising outcome of the scheme. The next couple of years should show whether this is a factor of Turing or whether the mobility age will conform more to those of Erasmus, which seem more logical for undergraduate mobility.

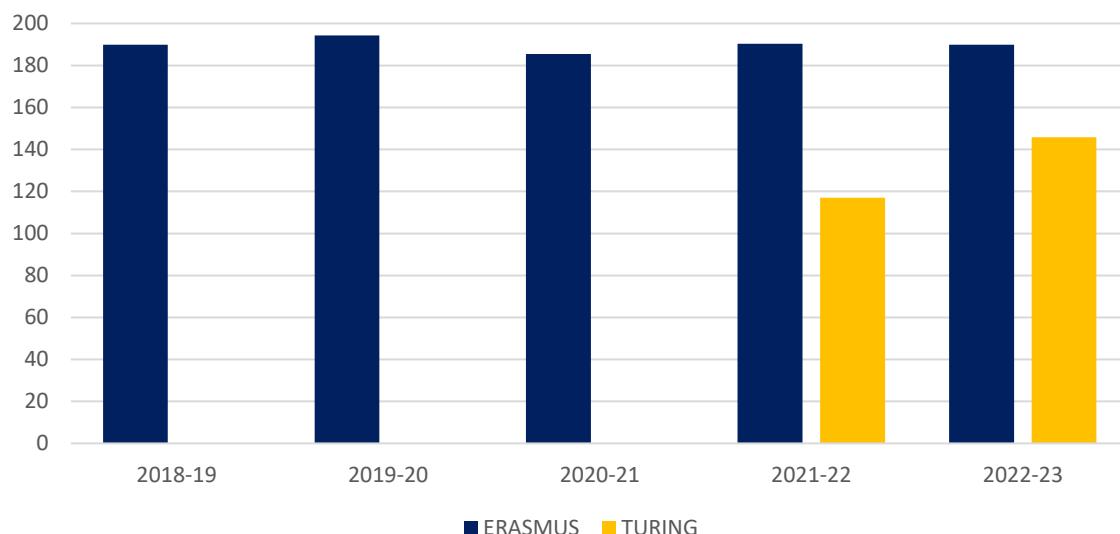

The data provided by the DfE (see note 12) for 2021-22 includes the age data for 95% of participants that year. It uses different age groups than above, but it states that 88.3% of participants that year were between 18 and 24 years old, roughly the same as the data obtained from the institutions, although there is a suggestion that the average of students was slightly lower than shown in Table 2.

c) Level of studies

Turing is a programme which mostly attracts undergraduate students. 93% of students were from that level in 2021-22 and the following year this figure increased by 1%. Obviously, the number of

postgraduate students was reduced to much lower levels: only 5% of taught postgraduate courses in 2021-22 and 4% a year later. This means that PG research only represented 2% in both years.

Table 3: Distribution of Turing students by levels


The comparison of both years shows that the gap between undergraduate and postgraduate students tends to expand. The number of undergraduate students increased by 17% but taught-postgraduate students decreased by 13% and research postgraduate students recorded the same number in both years which, in a sense, is a decrease considering that there were 15% more students participating in Turing in 2022-23 than the year before.

In total, ninety institutions sent abroad postgraduate students with the Turing scheme. This represents that most institutions included all levels in their mobility, even if it was with reduced numbers.

d) Length of mobility

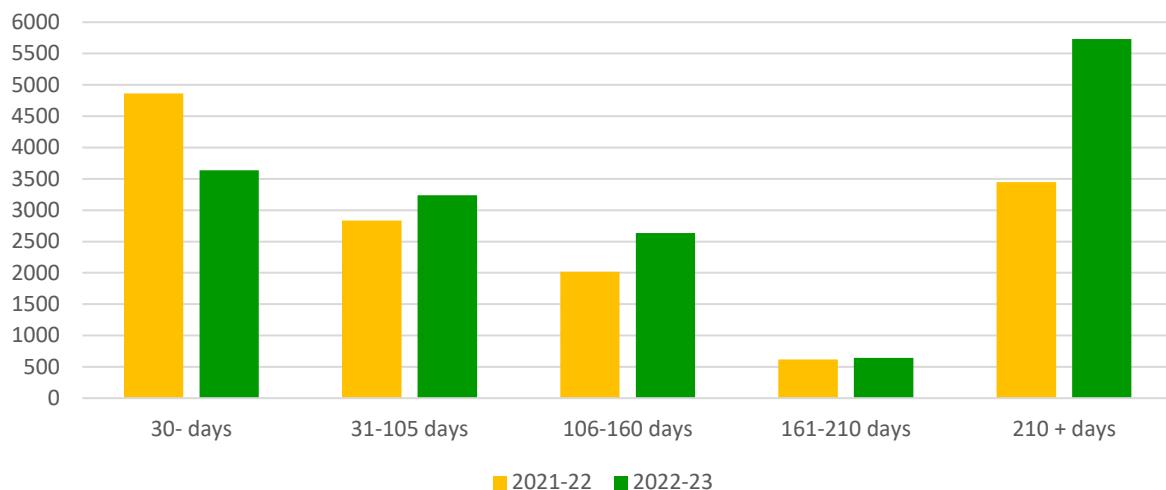

The length of the stay abroad is one of the elements of mobility where Turing has introduced more changes relative to Erasmus. A first aspect to consider is the minimum length required by each programme. Under Erasmus students had to stay abroad for eight weeks in the case of work placements or twelve weeks for study period - the only exceptions being force majeure for shorter stays.

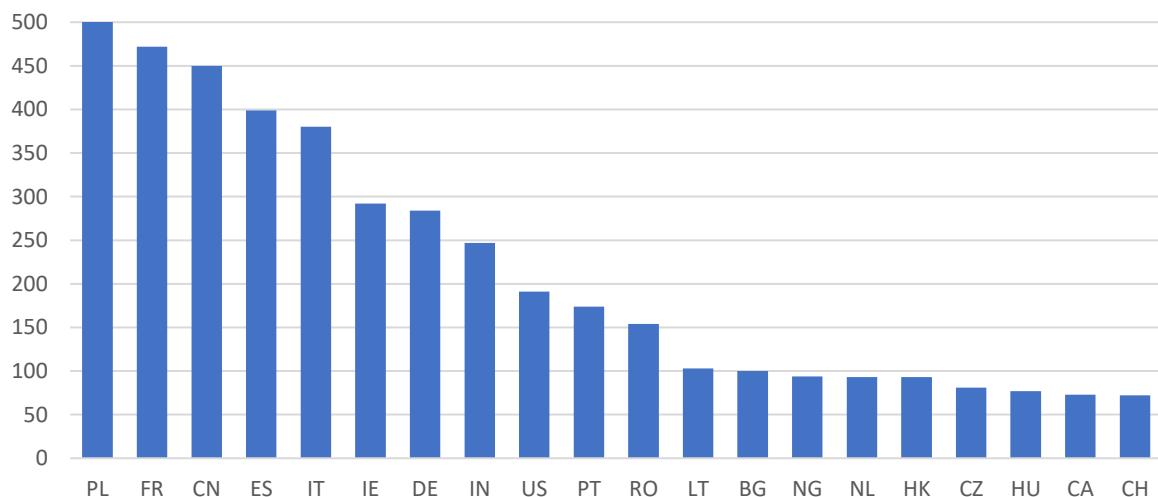
Table 4: Average length of mobility of Erasmus and Turing students (in days)

In contrast, Turing established a minimum length of 28 days (or 4 weeks) and opened the door to mobility periods of only two weeks in 2021-22 due to the restrictions created by the pandemic. The consequence was that the average stay abroad went dramatically down due to the possibility of funding short mobility, which previously had to be self-funded by students.

Table 5: Length of mobility of Turing students (absolute numbers in days)

Short mobility went from representing 35% of the Turing mobility in 2021-22 to only 23%. This was compensated by a steady increase of long mobility periods (going from 25 to 36%) with effect also in the total number of students going abroad. However, when looking at the number of Erasmus and Turing students with stays longer than 161 days (or 23 weeks, the minimum length of a year abroad) there were 300 fewer students in 2022-23 than the year before. This implies that Turing still would need further increase in long mobility to fully replace Erasmus.

It is significant to observe that short mobility (fewer than 30 days) introduced by the Turing scheme experienced a decrease in absolute numbers between the two years, possibly because two-week mobility was available in 2021-22 and not the following year. When analysing the destination of students, the importance of short mobility for some destinations such as Fiji, St Lucia or Tanzania becomes clear.


Consequently, it can be said that Turing provides opportunities for very short and longer periods of mobility as 60% of participants go abroad for less than 30 days or more than 210 days, with much lower percentages for the intermediate lengths.

e) Nationality of participants

Determining the nationality of Turing students presents a difficulty in the way it is reported to the funding authorities. Instead of the nationality of participants, the domicile of students is requested. That makes the four British nations the default domicile in many cases and distorts the results due to some international students being reported as British. However, the HESA return reports the actual nationality of participants in mobility (except for some of the institutions in Northern Ireland, where the nationality is not reported at all). Nevertheless, the combination of the different sources enables a fairly accurate determination of the origin of almost all students.

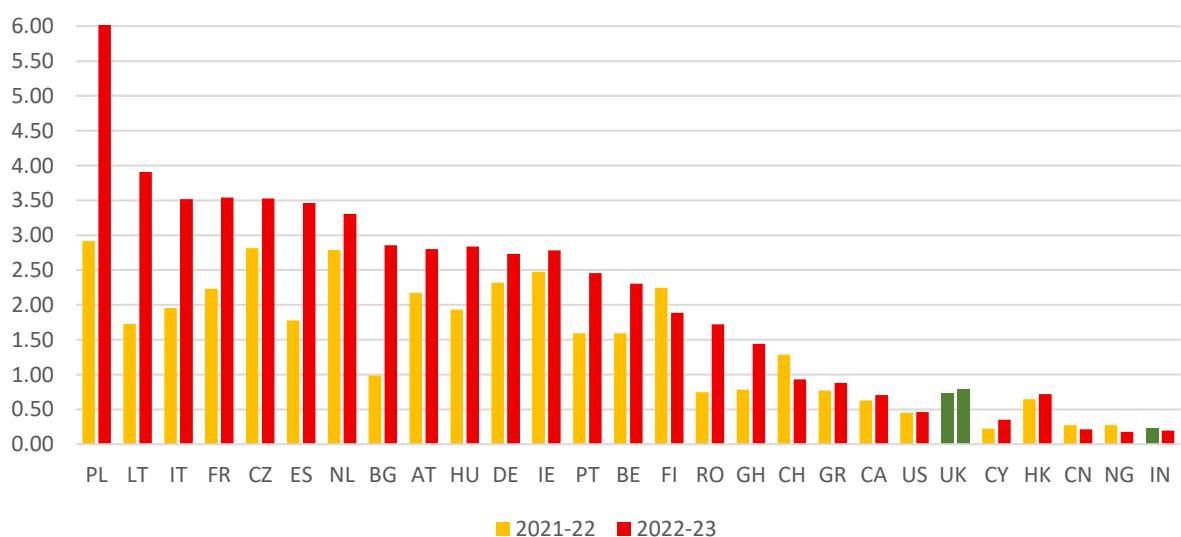

British national students represented 75% of the participants in the Turing scheme in its first two years, although the percentage was a bit higher in 2021-22 (76.4%) than in 2022-23 (73.8%), percentages very similar to those of the entire UK higher education student population, according to the HESA data for those years¹³.

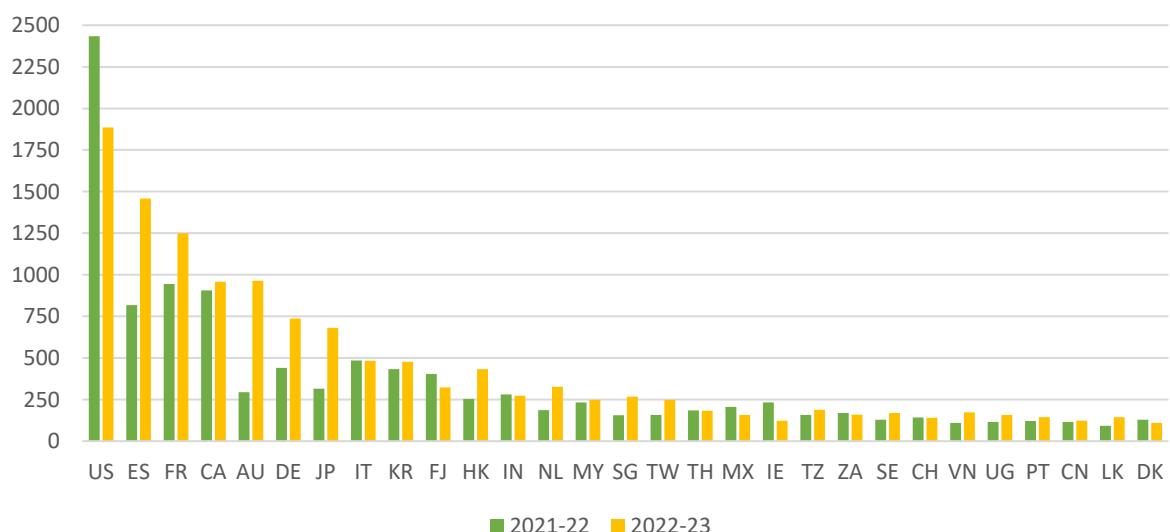
Table 6: Main nationalities of non-British Turing students (2021-22 and 2022-23 together)

Comparing the nationality of non-British Turing undergraduate students with the total number of students from each country enrolled in UK institutions, Poland, Lithuania and the Czech Republic show the highest percentages among the countries with more students going abroad. The United Kingdom shows a low percentage for mobility, well below 1% of the total number of students at undergraduate level.

Table 7: Percentage that Turing students represented on the total number of students for some nationalities (in 2021-22 and 2022-23)

The figures shown in Table 6 are calculated using the total number of undergraduate students for each nationality. This produces very low percentages for mobility as compared to total number of students of that particular nationality (some of whom might not be eligible for mobility). It is also important to

note that these percentages refer only to Turing students and not to the whole outgoing student mobility.


There are significant differences between the two years, as the percentage of students grows for all the countries, except for Finland, Switzerland and the three last in the ranking (China., Nigeria and India). In general, students from European countries show higher levels of mobility than those from the rest of the world.

f) Country of destination

The detail of the destination of Turing students is distorted by the concurrent running of the Erasmus programme in these first two years. Table 8 shows the destinations. The number of students going to the United States went down by almost 23% in only one year, despite still being the destination that receives more students. Russia as a destination suffered as a destination because of the invasion of Ukraine in February 2022 (230 in 2021 and 2 in 2022). In contrast, other countries, such as Estonia, Armenia, Georgia and Kazakhstan increased their numbers thanks to students in Russian courses, although the dispersion between them did not produce numbers high enough to place those countries among the top destinations. In general, Turing did not create new destinations for student mobility, it only subsidised mobility to destinations that were already receiving students from UK institutions.

Large increases can be seen in the cases of Australia (227% increase), Japan (115%), Brazil (100%), Hong Kong (66%) and Vietnam (60%). The most plausible explanation for these sudden increases can be based on the Turing calendar and the improvement on the implementation of the scheme. In the first year, the institutions applied in March-April 2021 when the selection of students abroad going abroad the following year had already been made. Student applications had to be made without any guarantee of funding in 2021-22 and that could have prevented many candidates from applying. However, one year later, students still applied to go abroad in late 2021 or early 2022 but with the assurance that funding was likely and some non-European destinations could compete with the European ones supported by the Erasmus programme. The figures for 2023-24, when available, will confirm this theory and show the level of attractiveness of all destinations when funding is available for all.

Table 8: Countries receiving more Turing students in 2021-22 and 2022-23

The consequence of these initial adjustments was that certain dispersion in the destinations for Turing students and the fact that the ten most popular destinations only represented 56% of the total of both years, with the United States contributing with 14.6%, Spain with 7.7% and France with 7.4%.

Table 9: Comparison between the top ten destinations in Turing and the whole outgoing student mobility (2021-22 and 2022-23 together) (in %)

TURING		ALL MOBILITY		
1	United States	14.55	France	12.62
2	Spain	7.67	Spain	12.07
3	France	7.39	United States	10.24
4	Canada	6.28	Germany	6.27
5	Australia	4.24	Italy	4.15
6	Germany	3.97	Canada	3.86
7	Japan	3.36	Netherlands	3.20
8	Italy	3.26	Australia	2.88
9	South Korea	3.07	China	2.71
10	Fiji	2.45	Japan	2.40

The disparities between Turing and total mobility are clear. Despite having a decreasing influence in the figures, the Erasmus programme had still an important weight, as it can be seen in the cases of France, Spain, Germany, Italy and the Netherlands. On the contrary, non-European countries notably increased their percentages in Turing with South Korea and Fiji as the most remarkable examples. The presence of China in the ninth position for total mobility is explained mainly by postgraduate mobility. But what was the weight of Turing in the total mobility of the two years? Turing students represented 43% of the total outgoing student mobility when considering both years together.

Table 10: Percentage represented by Turing students in the total student mobility for the most popular Turing destinations (2021-22 and 2022-23 together)

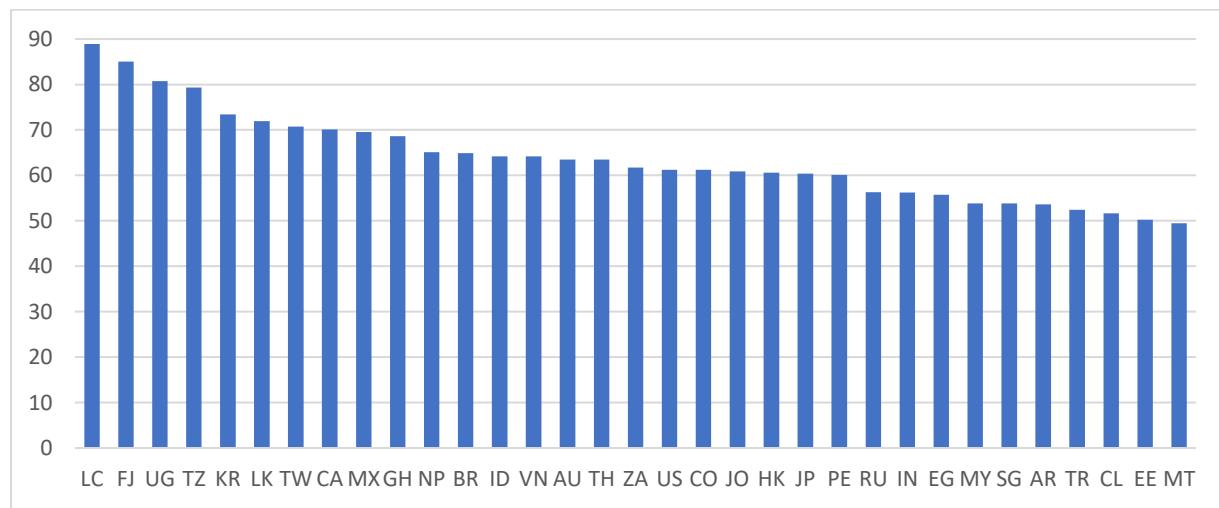


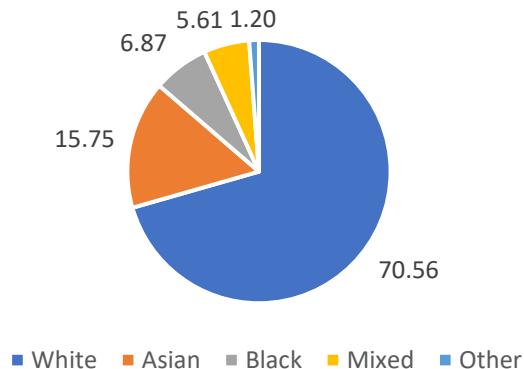

Table 10 offers a clear view of the importance of Turing in the total student mobility. The top four positions are occupied by St Lucia, Fiji, Uganda and Tanzania, countries to where mobility is almost entirely organised through third parties. Also relevant is that European countries are poorly represented in this ranking, with only Turkey, Estonia and Malta achieving significant percentages. This is explained by the coexistence with the Erasmus programme, but unveils doubts about more recent

years, when the European programme was not available anymore. The obvious question arising from the data would be to what extent mobility to those countries would reach similar levels without Turing.

Table 11: Distribution of Turing students by geographical areas of the world (in %)

The geographical areas of the world hosted Turing students with a variable intensity. The diversity not only came from the different choices made by students, but also from different behaviours in the first two years of the scheme. In addition, the same geographical grouping can also show diverse results. For example, Morocco and South Africa are under 'Africa' but the characteristics of the students they receive are not that similar. 'Caribbean' includes Spanish-, French- and English-speaking countries; Japan and India are 'Asia', but the Middle East countries have a separate grouping for them. And, finally, Mexico is grouped with Central and South America and not with North America, as its mobility has more similarities with Latin American countries than with the United States and Canada.

As seen when analysing the countries of destination, there are evident changes between the two years. More students went to Europe to replace the Erasmus opportunities, and to Asia and Oceania with an 'easier' implementation of the scheme in the second year. But numbers for North America dipped; a reason could be a more restrictive visa policy implemented in the United States after Covid-19¹⁴.


g) Ethnic origin of students

The fields required for the reporting of Turing activity by the participating institutions included the ethnic origin of students, a new element that was not available in other sources of information. However, this field was one of the most protected by the institutions to avoid the disclosure of personal data of participants. In addition, not all institutions reported the exact ethnic group (British or British Asian Pakistani, for example) but just Asian. And in an important number of cases, the ethnic origin was reported as 'refused' or 'prefer not to say'. Consequently, the number of valid responses represented only 31.2% of the participants in the scheme in the first two years.

To avoid the inconvenience of inconsistent reporting, students have been classified in the most used five main groups:

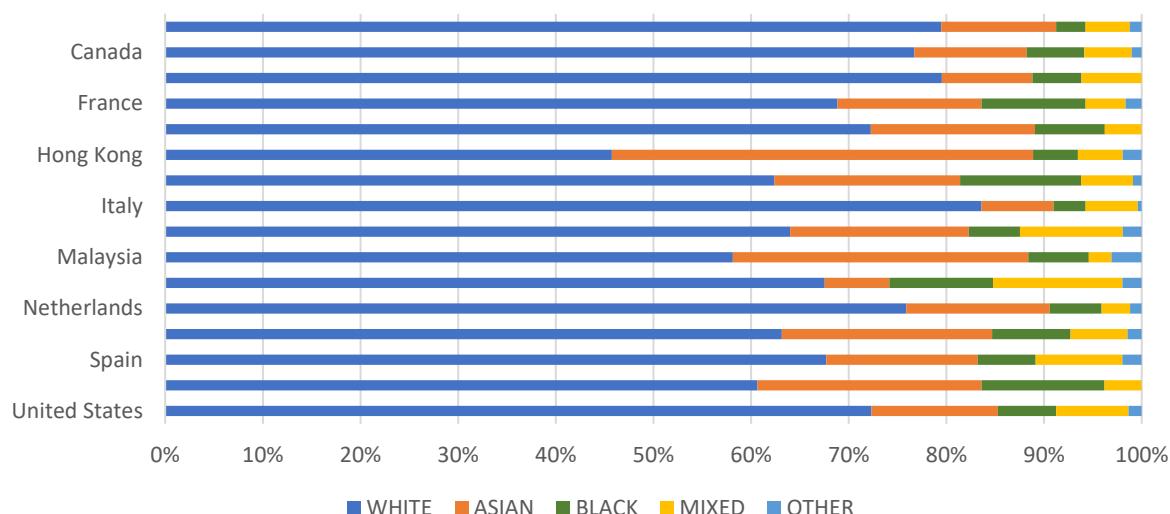
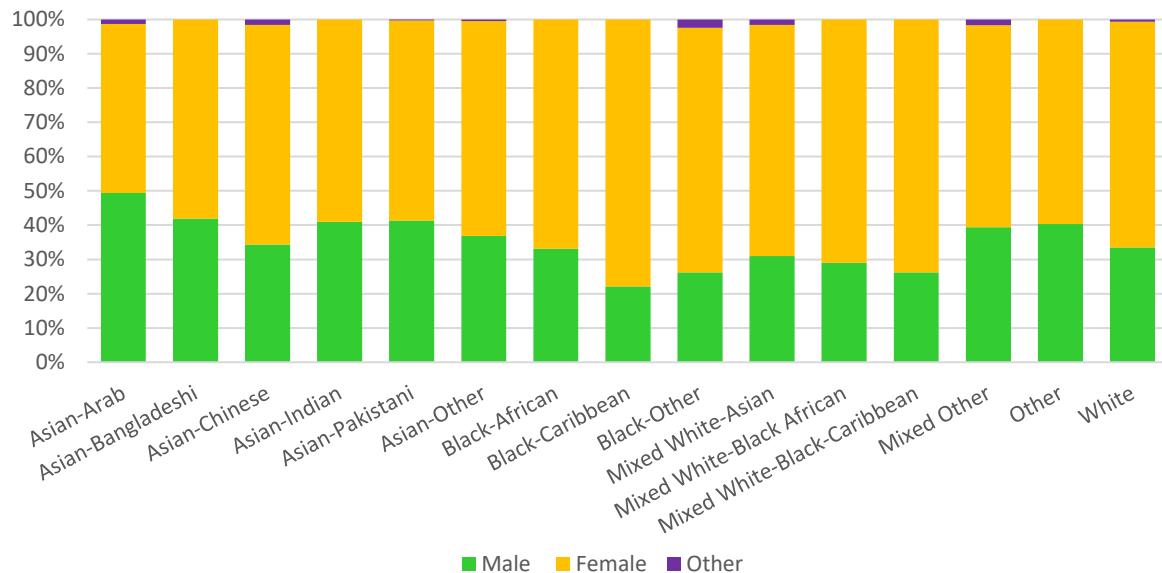

White (including White British and others)
 Asian (including Arab, Chinese, Indian, Pakistani, Bangladeshi and other Asian origins)
 Black (including Black African and Caribbean)
 Mixed (including all possibilities of mixed races)
 Other (those not included in the other groups).

Table 12: Distribution of Turing students by ethnic origin (2021-22 and 2022-23 together)

No big differences can be seen when analysing the ethnic origin of Turing students according to their gender. White students represented 67% of male students, 71% of female students and others. The percentage of male students was higher for Asian students (18.6%) but lower for Black students (6.8%) and Mixed races (5.8%). The data provided by the DfE for 2021-22 (see note 12) slightly differs for white students (66%), shows similar percentages for Asian, Black and Mixed-race students, but increases the groups of Others up to 12%, a figure that seems exaggerated and is possibly a consequence of the confusing reporting mentioned before. Comparing with the data provided by HESA for 2022-23¹⁵, white students would be underrepresented in Turing by 1.3%, as well as Black (-1.38%), whereas Asian students going abroad represented 2.81% than their share in higher education and mixed-raced increased their participation by 0.89%.


Table 13: Ethnic group distribution of Turing students going to the main destinations (2021-22 and 2022-23 together)

The more popular a destination, the more diverse is the ethnicity of students going these. As expected, white students represent the majority of students to Italy, Fiji and Australia, and the lowest to Hong Kong, Tanzania and Malaysia. As for the rest of the ethnic groups, Hong Kong has the highest

percentage of Asian students, Tanzania and France of Black students, and Spain and the United States of mixed-race students. Using the sub-division when it is possible, the distribution by genders shows clear differences among the groups.

Table 14: Gender distribution by ethnic groups (2021-22 and 2022-23 together)

The lowest percentage of male students corresponds to Black-Caribbean students (22%), Black-Other and Mixed White-Black Caribbean (26%) and Mixed White-Black-African (29%). Logically, the same ethnic groups present the highest percentage of female students. The presence of other students is almost testimonial, although those more present are Black-Other (2.4%), Asian Chinese, Mixed Other and Mixed White-Asian (1.6%) groups.

Table 15: Top four destinations by sub-ethnic groups (2021-22 and 2022-23 together)

	FIRST	SECOND	THIRD	FOURTH
Asian Arab	United States	Spain	Malaysia	France
Asian Bangladeshi	United States	Spain	Egypt	South Korea
Asian Chinese	United States	Hong Kong	Japan	Spain
Asian Indian	United States	India	Spain	France
Asian Pakistani	Spain	United States	Malaysia	Germany
Asian Other	United States	Spain	South Korea	Malaysia
Black African	United States	France	Spain	India
Black Caribbean	United States	Spain	India	France
Mixed White-Asian	United States	Japan	Spain	Mexico
Mixed White-Black African	United States	Fiji	Spain	Mexico
Mixed White-Black Caribbean	United States	Spain	Mexico	Japan

By countries, there is clear dominance of the United States (first destination for 10 out of the 11 sub-ethnic groups) with considerable presence of Spain and France and high positionings for Malaysia and Mexico. Most of the Asian countries included in the table as one of the four top destinations are chosen by students with an Asian ethnic origin.

White students, apart from representing the majority of those going abroad, showed different interests in the choice of destinations.

Table 16: Top ten destinations of white students by genre (2021-22 and 2022-23 together)

		MALE		FEMALE
1	United States	19.45	United States	15.38
2	Spain	6.43	Spain	6.98
3	Canada	5.44	France	5.89
4	Japan	5.24	Canada	4.65
5	Australia	4.79	Australia	4.12
6	France	4.74	Fiji	3.68
7	Germany	4.09	Italy	3.48
8	Italy	3.09	Japan	3.01
9	Fiji	2.84	South Korea	2.83
10	South Korea	2.84	Malaysia	2.51

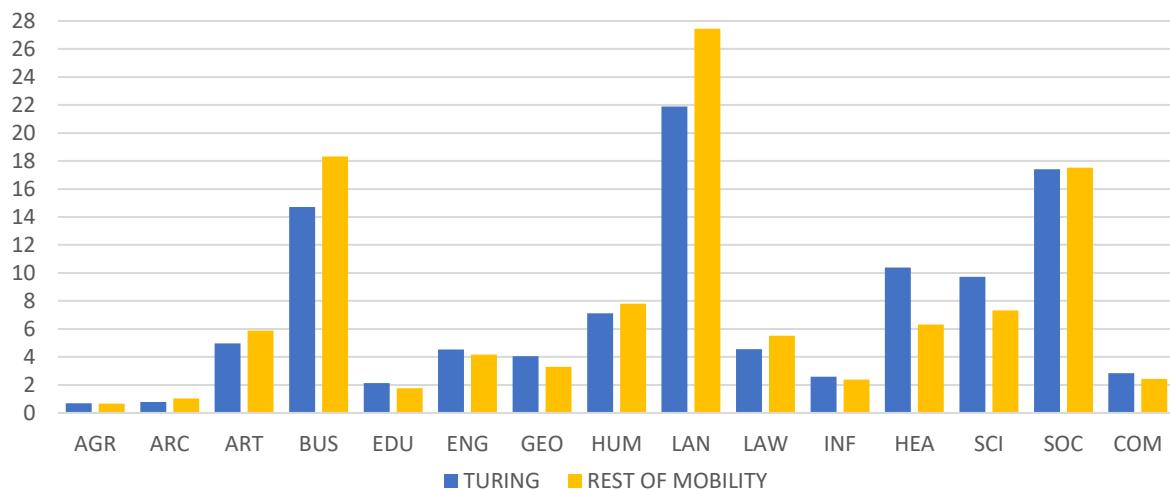
The United States, Canada and Australia together represented the destination for 29.7% of male white students, but only 24.1% of female students. Apart from the typical destinations for languages (France, Spain, Germany and Italy), the presence of Fiji, Japan and South Korea is stronger than for other ethnic groups. Comparing with table 15, countries with a prominent position in at least one ethnic group, such as India, Hong Kong and Egypt are in much lower position in the choices made by white students.

Students who did not identify themselves as male or female represent a much smaller group, with clear dominance of white students (70% of the group), followed by Asian (20%) and the rest of ethnic groups with smaller percentages. The main destinations in this group also included the United States as the choice for 22.9% of students, followed by Canada, France, Australia and Japan.

From the data, it can be said that the ethnic group has an influence in the choice of destinations, as well as gender have an influence in the decision of going abroad in the different ethnic groups.

h) Areas of study

The type of course students are following when going abroad conditions mobility if part of an institutional exchange because the places are pre-determined and, in some cases, students must compete for them. This can be more significant for Language and Business students where compulsory mobility as part of the degree is more common. In the case of foreign languages, the decline in numbers is something that has been happening for years and some authors, such as Muraad's-Taylor (2023)¹⁵, linked this decline to widening participation and growing elitism related to language courses in higher education.


An element that has been emphasized by the Turing scheme has been multidisciplinary mobility made of groups of students from different courses going abroad for a short period of time with a common objective. This objective can be related to development or humanitarian aid, concrete topics or, simply, the participation in summer schools organised by partner universities. The proliferation of such initiatives has modified the distribution of students by areas of study as a single trip can include participants from different schools or faculties.

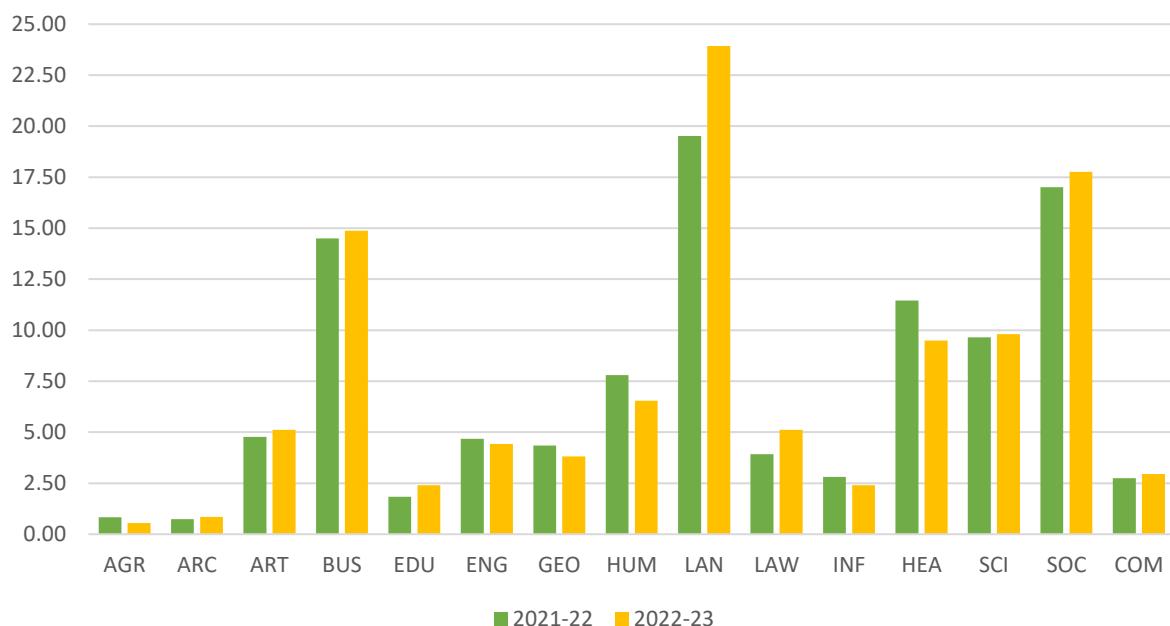
To classify the courses students were following abroad (or their area) the traditional classification made by the European Commission for the Erasmus programme has been followed. This allows

comparing the data for different years, (even though other classifications based on the ISCED tables are used in Europe these days¹⁶).


The classical division of subjects is based on fifteen different groups with an extra one for other subjects, usually with small number of participants.

Table 17: Area of study of Turing students compared to the rest of outgoing mobility (2021-22 and 2022-23 together) (in %)

From the beginning of the European exchange programmes in the 1980s Language represented the largest group of students going abroad from the United Kingdom. However, looking at the last ten years analysed¹⁷, Languages went from representing 33.2% of students going abroad in 2013-14 to only 23.7% of students and, in absolute terms, this represented 2,600 fewer students. These were students who had a language as a major part of their degree on its own, with other languages or in combination with another subject as joint honours, for example in International Business AND French or Chemistry AND Italian. Another group is represented by those students with a language as a minor subject, whose number also decreased from 900 to 700 in ten years. Table 17 seems to contradict this evolution by showing an increase in the number of language students, but this is due to new opportunities offered by Turing to those students. In fact, when looking at the funding received by language students, it can be clearly seen that Erasmus and Turing together went down in 2022-23 and more students had to self-fund their mobility or rely on other sources of funding.

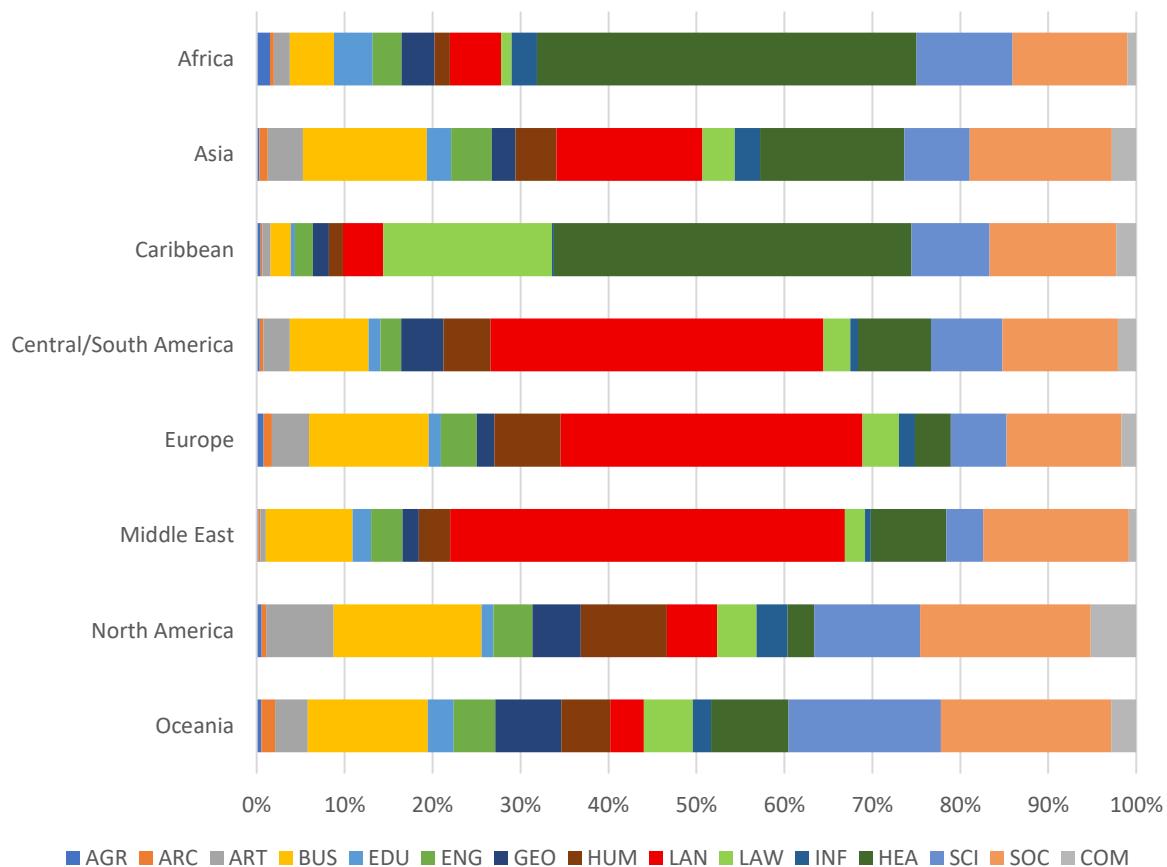

Table 18: Undergraduate language students by funding received (from 2017-18 to 2022-23)

Business students followed a similar trend, although in that case, the decrease was in number of students going abroad, not in students enrolled in such courses. Between 2018-19 and 2022-23, the official statistics show an increase by 63% in the number of enrolled students in degrees of the Business and Management Studies group¹⁸. However, the number of Business students going abroad went down by 10% in the same years.

In other areas of study Turing managed to reach the same level as other sources of funding. Law, Engineering and Social Sciences are examples of this evolution. On the other hand, there were more Health students funded by Turing than with Erasmus or without external resources. This does not mean that the number of students from Health degrees, such as Medicine, Nursing, Social Work or Physiotherapy, have increased in recent years. They used to go abroad for periods between four and eight weeks without external funding and many of them are now receiving the support of the Turing scheme. As an example, only 75 Medicine students received an Erasmus grant in 2018-19, but 1,103 received Turing support in 2022-23.

Table 19: Distribution of Turing students by areas of study (2021-22 and 2022-23) (in %)

Looking only at Turing students in the first two years of the scheme, three areas of study (Languages, Social Sciences and Business) represented 51% of the mobility funded in 2021-22, but 55.6% in 2022-23 with 1,957 more students participating. These three areas of study represented 93% of the general increase experienced by the programme, that went from 13,785 participating students in 2021-22 to 15,892 one year later. Decreases in absolute numbers in Health, Humanities, Informatics and Agricultural Sciences were compensated by a moderate increase shown by other areas of study.


The areas of study show significant differences when considering the geographical areas of the world. Looking at where the highest percentage of one of area of study went, a ranking of highest and lowest percentages can be established:

- North America had the highest percentage of students in Art and Design, Business, Humanities, Informatics, Social Sciences and Communication and the lowest percentage in Health.

- Oceania is the highest in Architecture, Geography and Environment and Sciences and the lowest in Languages.
- Africa is the highest in Agriculture, Education and Health and the lowest in Law and Social Sciences.
- Middle East is the highest in Languages and the lowest in Architecture, Art and Design, Sciences and Communication.
- Caribbean is the highest in Law and the lowest in Business, Education, Engineering, Geography and Environment, Humanities and Informatics.
- Europe and Central/South America are not first nor last in any area.

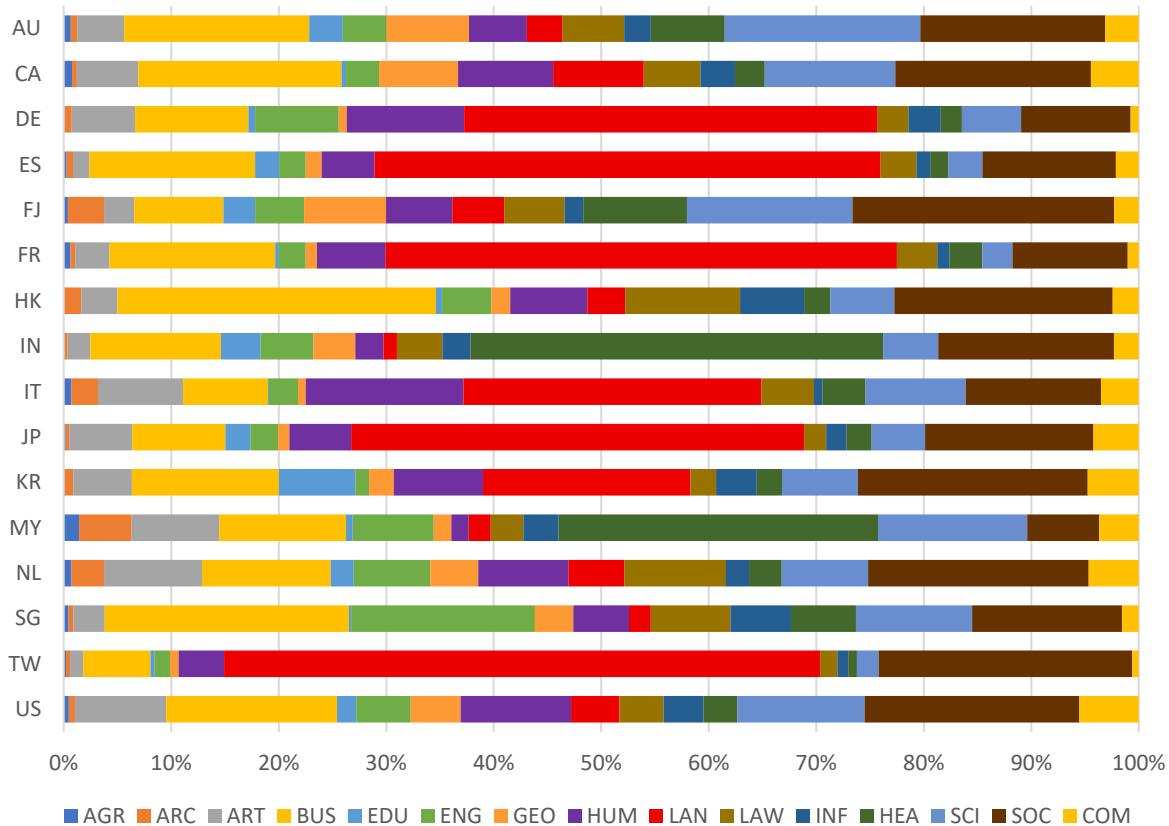
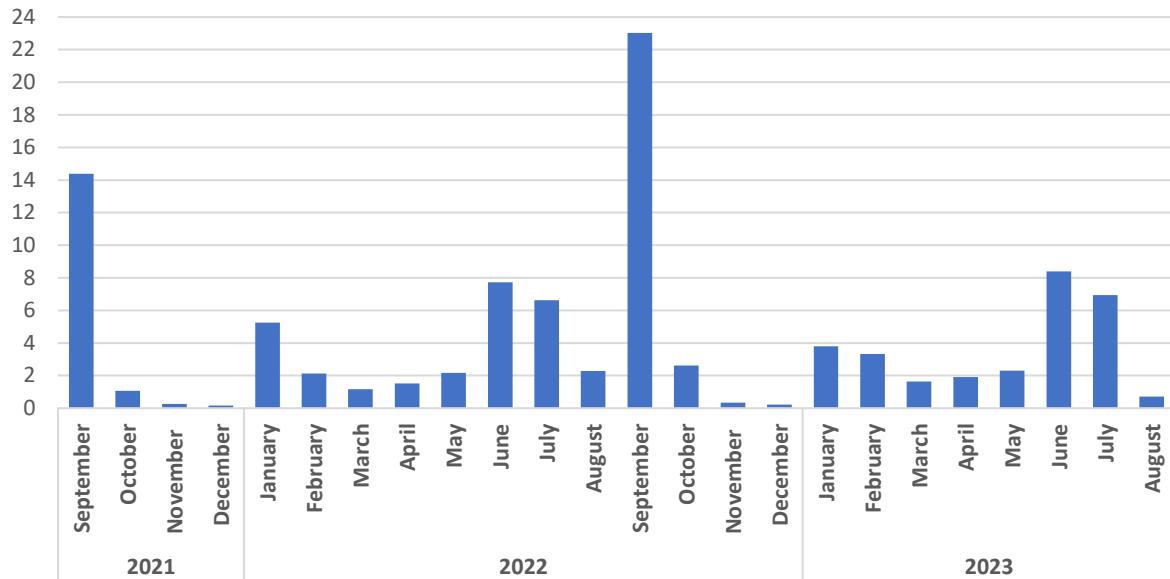

The high position of Law in the Caribbean is due to large groups travelling there from one particular university, which distorts the result and does not represent a trend followed by other institutions to the same destination.

Table 20: Distribution of areas of study by geographical areas (2021-22 and 2022-23 together) (in %)

Huge differences can be seen in table 20 depending on the part of the world concerned. As examples, Language students are very relevant in Europe, Central/South America and the Middle East, but a minority in Oceania. Health is the main area in Africa and the Caribbean, but barely registers in North America.

Table 21: Distribution of areas of study at the countries receiving more Turing students (2021-22 and 2022-23 together) (in %)


The distribution of areas of study at the countries with the highest levels of Turing student mobility also reflects the deep differences between the countries. Countries such as Germany, Spain, France and Taiwan show a very high percentage of Language students, compared to Canada, the Netherlands or the United States. At a lower level, Social Sciences is well represented everywhere and, in many cases, above Business studies thanks to the area studies that have been classified as Social Sciences and Languages. In general, there is not a concrete pattern that makes similar the distribution in two countries beyond a certain approach due to their geographical situation. For example, the distribution in France and Spain is similar, but different to that in Italy. The same happens when comparing Taiwan, Hong Kong, Singapore and Japan, part of the same continent but with different distributions of areas of study.

Other areas, such as Education and Health, reflect a different type of mobility, usually short and linked to compulsory short placements that usually happen in countries such as India or Malaysia, as it happened before the arrival of the Turing scheme even without the funding.

i) Dates of mobility

There were two periods of the year when Turing mobility started. They correspond to students going abroad for a full year (September) or for a semester (September and January) and to the most common times for the start of short mobility, usually June / July.

Table 22: Starting month of Turing mobility (2021-22 and 2022-23 together) (in %)

The conditions set by the Turing regulations establish that mobility must happen within an academic year, understood as the period between September 1st and August 31st every year. This left those students going to destinations where the academic semesters start in July or August, such as the United States, Australia or the Scandinavian countries, without funding for the first weeks of their mobility. That is why many mobility periods formally start on September 1st for Turing reporting purposes and that increases the figures of that month every year considered, even if the mobility was only for the first part of the academic year.

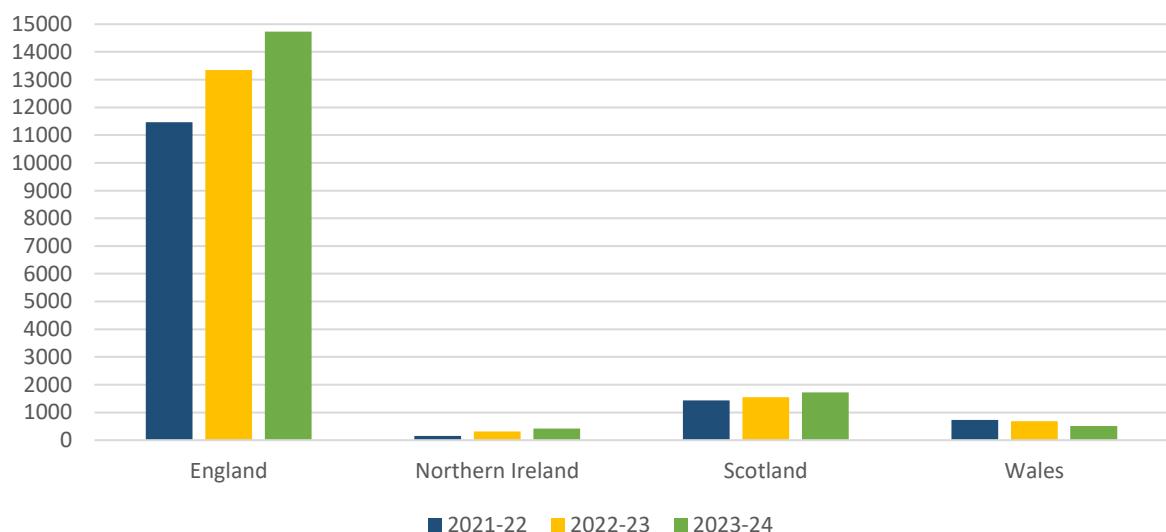
Students going abroad for the second semester depart in January/February (depending on the start of the activity at the host institution) and that creates the second high period for departures every year. With or without a structure by semesters, part of October and November/December are much quieter months for student mobility, unless it is for a short period.

The third big period for departures runs between June and July every year. This is the time for short mobility and summer schools that must be finished by August 31st to comply with the regulations of the scheme. In the first year, 14.3% of the mobility started in June or July, percentage increased to 15.3% one year later. The two-week stay allowance in 2021-22 explains why 2.2% of students went abroad in August 2022, a percentage that was notably reduced in 2022-23, when the four-week minimum stay was re-introduced,

Turing funding and mobility at the UK countries

Leaving the Erasmus scheme in 2020 provoked a reaction from the devolved administrations. There were several initiatives launched in the following years. These are not discussed in detail in this report, but some examples are given below.

In Scotland, Richard Lochhead, Further Education, Higher Education and Science Minister in the Scottish government said in January 2021: ‘...The Scottish government consistently argued throughout the Brexit process that participation in Erasmus+ is in the best interests of the whole of the U.K., and that either the whole of the U.K. should participate, or the U.K. government should negotiate to ensure


Scotland (and other devolved countries in the U.K.) could do so themselves...¹⁹ An alternative to Erasmus, announced by the Scottish government, is not operational yet.

As soon as March 2021, The Welsh Government announced the creation of a new exchange scheme '*...to continue to benefit from international exchanges in a similar way to the opportunities that flowed from Erasmus+, not just in Europe but also further afield...*²⁰'. The new scheme, named Taith, was operational from 2022.

After a commitment to ensure students in Northern Ireland could still partake in mobility after Brexit, the Irish Government announced the allocation of €2 million to support mobility and internships across Europe to higher education students in Northern Ireland in 2023²¹.

All these initiatives did not deter the full participation of all UK countries in Turing. Data for 2023-24 has also been obtained and is also included in Table 23 to further explain the evolution of Turing mobility in the first years.

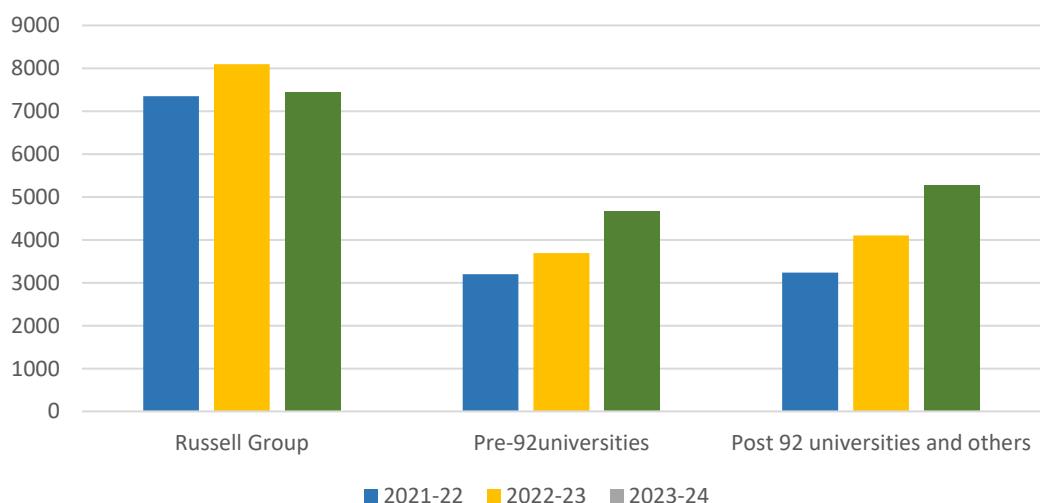
Table 23: Turing students from the UK countries (2021-22 and 2022-23 together)

The implementation of Turing in the first three years showed an increasing dominance of England, with a share in the percentage of students going from 83.2% in 2021-22 to 85.8% in 2023-24 and an absolute growth of about 3,300 students receiving Turing funding.

Table 24: Percentage of Turing funds awarded and students participating in the scheme by UK countries (from 2021-22 to 2023-24) (in %)

England		Northern Ireland		Scotland		Wales		
	% allocated	% actual students	% allocated	% actual students	% allocated	% actual students	% allocated	% actual students
2021-22	83.79	83.21	1.40	1.11	10.23	10.41	4.57	5.27
2022-23	85.37	84.00	1.74	1.99	9.34	9.74	3.48	4.27
2023-24	85.76	84.75	1.94	2.38	9.35	9.92	2.95	2.95

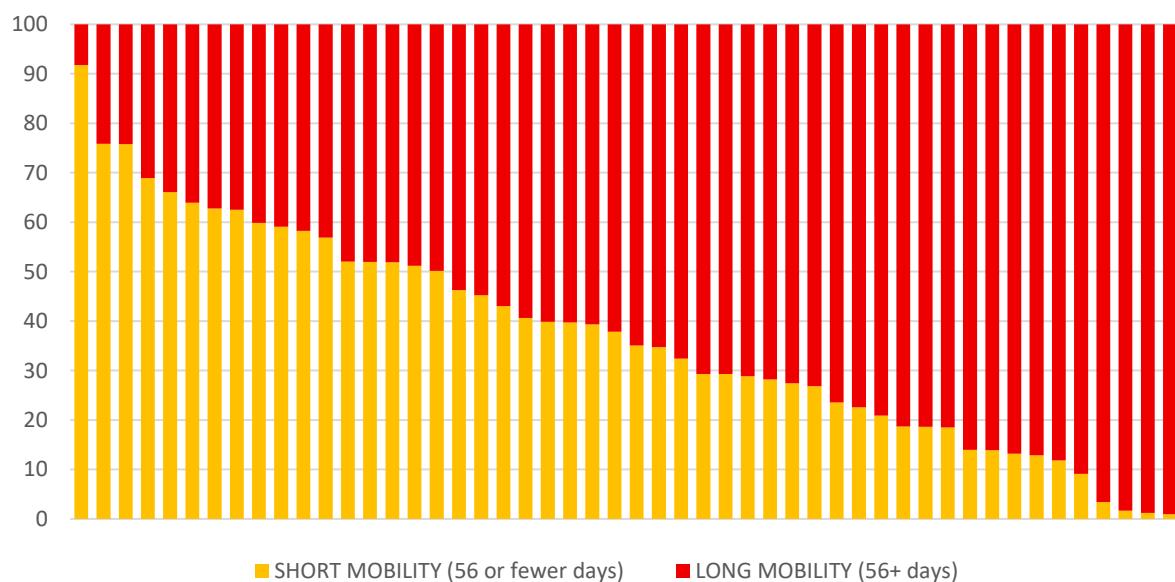
Table 24 illustrates not only the distribution of the funds, but the use made by all UK countries. The percentages of awards are very similar to those of the total number of students in each country. But two elements can distort these figures: the length of the mobilities and the participation of students from disadvantaged backgrounds or SEND (Special Educational Needs and Disabilities). Both can explain the differences between the percentage of funding allocated and the actual number of students participating if extra funding was allocated to those group of students.


As an after effect of the pandemic, the use of the funds allocated to the different countries was low in 2021-22, only reaching 46.1% in England, 50.8% in Scotland, 55.8% in Wales and 61.2% in Northern Ireland for an average of 47.3% in the entire United Kingdom²². No data is available for the following years as yet.

The institutional perspective (from 2021-22 to 2023-24)

Students get the support from Turing through their home institutions, who have access to funds allocated by the DfE at the end of the annual application and selection process. The availability of such funds and their use by the institutions heavily conditions the number of students going abroad thanks to the Turing scheme every year. The annual selection process means that the institutions do not get all the funding they applied for or, simply, do not get any if their application is considered as insufficient. From the data provided by the DfE we know that 139 higher education institutions obtained some funding and no application was rejected. In 2022-23, 131 institutions were successful but 19 were not. And in 2023-24, 124 out of 145 applications were successful²³. The consequence of the process was that 107 higher education institutions sent students abroad with Turing funding in all three years, 20 others only in two of the three years and 21 only one of the three years, giving a total of 148 institutions sending students abroad between 2021-22 and 2023-24.

To know from which type of institution Turing students were coming from, the institutions have been divided into three groups following the classical division in higher education: the Russell Group (24 universities), the pre-92 universities (34) and post-92 universities and other institutions (90). The last group includes the post-92 universities and specialized institutions, such as Art Schools, Business Schools or Colleges of Further Education, all of them awarding higher education degrees.


Table 25: Distribution of Turing students by groups of institutions (from 2021-22 to 2023-24)

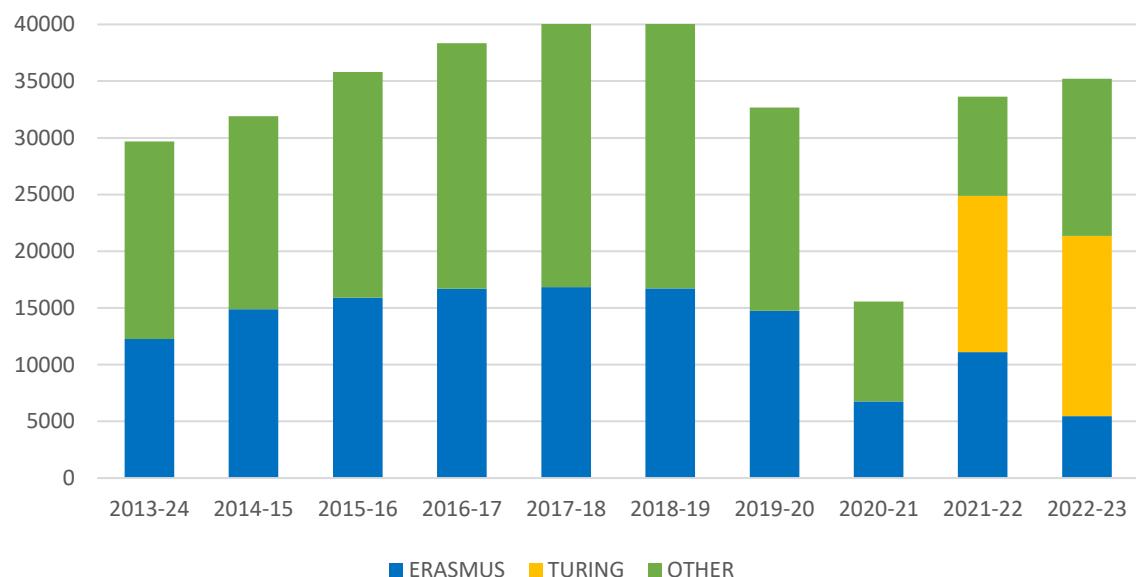
The comparison between the three years produces some surprising results. Pre-92 universities increased the number of participants by almost 1,500 in two years. Post-92 and others by a bit more than 2,000, but the Russell Group only by 100 with a clear decrease in the third year. Considering that 2023-24 was the first year without the Erasmus programme, it is interesting explore the reasons for these figures to discern what happened to all students with a compulsory year abroad who could be affected by a limited amount of funding available.

For 73 institutions 2022-23 was the year when they sent more students abroad with Turing. The second year was the best for 40 other institutions and the first year was the best for the remaining 35. But five of the ten institutions sending more students between the three years showed higher numbers of mobility in Year 1 than in Year 2.

Table 26: Short vs long mobility at the 50 institutions sending abroad more students with Turing (2021-22 and 2022-23) (in %)

Institutions sending large cohorts of students abroad made their choices for short or long mobility in 2021-22 and 2022-23. The data for 2023-24 will help discern whether short mobility is the preferred choice or to what extent it represents most of the mobility. In the first two years of the Turing scheme, in co-existence with Erasmus, for 17 out of the 50 institutions sending the most students with Turing short mobility represented more than half of mobility and for a third of those 50 institutions it represented at least a third of the total number of students participating in Turing.

Over the first two years of Turing, four institutions sent more than 1,000 students abroad, fourteen institutions between 501 and 1,000 students, fifty-nine others between 101 and 500 and sixty-five fewer than 100 students.


The average mobility of the participating institutions was of 103 students in 2021-22 and 126 students in 2022-23, with fewer institutions participating in the second year but a higher average number recorded.

In summary, the Turing scheme did not establish clear trends in the first three years from an institutional perspective. The choices made for short or long mobility or the combination of both, the uncertainty about the level of funding received and the risk represented by an annual application partly explain high and lows in mobility, despite the total increase in numbers from one year to another.

Turing as a replacement for Erasmus

Turing was created to replace Erasmus in 2020, after the UK Government decided to discontinue the participation of British institutions in the European initiative. With the first mobilities starting in September 2021, it has funded 47,065 higher education students to go abroad in its first three years. It is a high number of participants for a new scheme. But it is still unclear if it is meeting the expectations created as a replacement for the European programme.

Table 27: Students going abroad according to the funding received (from 2013-14 to 2022-23)

The withdrawal from the Erasmus programme was decided in the middle of the pandemic when the number of students going abroad was at a very low level. The impact of the pandemic also affected mobility in the post-pandemic years. For some institutions the continued use of European funding through existing Erasmus contracts (until May 2023) also conditioned the mobility of the last two years when Turing was already in operation.

The number of students funded by either of the two schemes decreased from 24,890 in 2021-22 to 21,347 in 2022-23. The available data for Turing in 2023-24 shows that 17,388 students participated. Without any funding from Erasmus, this would mean that almost 4,000 fewer students received support from any of the two funding schemes. This does not automatically mean that student mobility continued to decrease in 2023-24 because the data for that year is still not available and it is not known yet how many students went abroad with alternative funding or via their own means.

Table 28: Students going abroad with Erasmus or Turing funding by areas of study (2021-22 and 2022-23)

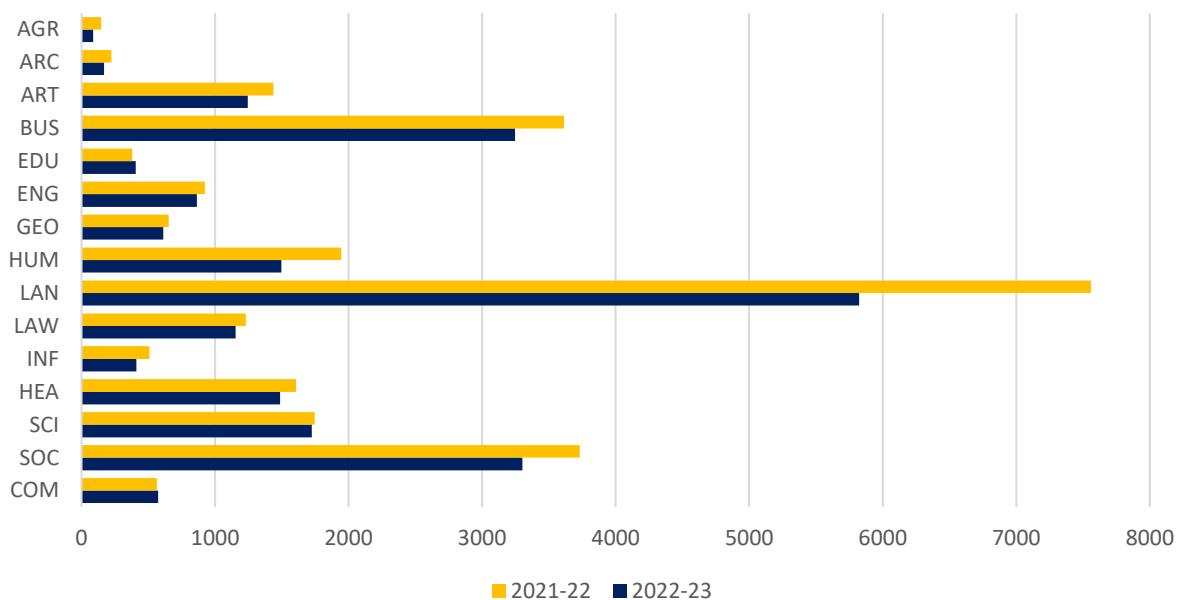


Table 28 illustrates the effect of the coexistence of Erasmus and Turing in 2021-22 and 2022-23. It clearly shows that the number of students going from the different areas of study mostly decreased and particularly for students in Language, Business and Social Sciences, the three main areas of study in student mobility.

The figures achieved by Turing in 2023-24 are higher than those for the year when more students participated in Erasmus. That was in 2018-18 with a total of 16,832 students. However, this figure referred mostly to European mobility with a small number of students going elsewhere in the world through the Erasmus KA-107 action. But all those students went abroad for at least eight weeks for placements or twelve weeks for study periods. The comparison between Erasmus and Turing shows more evident differences. In 2022-23, 4,500 Turing students went to the countries covered by the Erasmus programme requirements. This represents about 11,000 fewer students than in 2017-18 when the effect of Brexit was less evident and the pandemic had not started.

The student mobility represented by Erasmus has been replaced by a more universal scope of destinations and the introduction of short mobility with an increasing number of students going abroad without the coverage of the Turing scheme. Some institutions have created their own mobility schemes, although it is not possible to know their coverage and to what extent they support longer or shorter stays.

Thus, it cannot be said that Turing has entirely replaced Erasmus. In fact, its first two years have changed the characteristics of mobility and have created a new support for mobility where the conditions are different than in Erasmus i.e. widening both destinations and required length of mobility. And this is without considering the decrease in the reciprocity of exchanges with European partner institutions, the lack of staff mobility or the possibility of fully participating in various Erasmus projects.

In conclusion, Turing is not a British Erasmus programme, it is a different programme with very different objectives and outcomes.

Some concluding remarks: positives and negatives

In November 2023 the British Academy published a briefing on Turing and Erasmus commissioned by the All-Party Parliamentary Group for Modern Languages, ahead of a House of Lords debate on financial pressures in the higher education system²⁴. The briefing was produced before actual figures of Turing mobility were released and is based on a comparison between actual Erasmus numbers and estimations made at the time of the Turing selection. Positively valuing the wider geographical scope of Turing, it also says that ‘...Whilst mobility to countries beyond Europe is on the increase under Turing, it is unclear whether this is because outward mobility to these destinations has been rising overall in recent years...’. And this clearly states one of the realities of Turing, helping to fund non-European mobility that in many cases was happening before without that funding.

Funding has been, and will be, a crucial issue for Turing. The first budget allocated in the summer of 2021 awarded £67 million to higher education. This amount was reduced to £62.1 million a year later and to £59.9 million for 2023-24. The nature of the funding, coming from the Government budget, does not imply increased funding in the years to come and this will jeopardise the growth of the programme and its value.

One of the most significant negative points of the scheme has been the administrative burden it has represented for the participating institutions. This was one of the main complaints expressed to IFF Research when preparing its ‘Turing Scheme: Year 1 evaluation’ (see note 8), published in January 2024. According to the research, 79% of higher education institutions found the Turing application process very or fairly difficult. It also says that ‘...providers also described the questions as repetitive, making the application tricky in places, and tedious...’, 61% of the institutions disagreed that the time between submitting applications and receiving the outcome was satisfactory. Some institutions said they ‘...were unable to guarantee funding to participants as awards were confirmed too close to the start of the placements, or even after some placements were already underway...’. These complaints referred to the first year of implementation. Difficulties of communication with the managing team or excessive administrative burden for payments have been complaints that often arose in discussions among practitioners. These obstacles, compared to a less demanding process for Erasmus, have created a negative image of Turing, although it does not seem to deter some institutions applying for funding²⁵.

Some of the difficulties in the management of the scheme had a direct effect on the actual mobility. For example, the lack of synchronicity between the application of students to go abroad and the resolution of the institutional application creates a gap during which students must confirm their mobility without having a guarantee of funding. For obvious reasons, this obliges many students to withdraw, and this particularly affect widening participation students.

As has been mentioned several times before, Turing represented a large increase of short mobility of four weeks (or even two in 2021-22) often to the detriment of long mobility. Any mobility adds to the total and represents an undoubtable benefit for the participants that, otherwise, may not consider the possibility of going abroad. However, the relation between some of these mobilities and volunteering is not entirely clear. Four weeks working for a charity organisation in an exotic location enormously differs from the classical concept or study or work abroad in activities related to the respective degrees and with recognition of credits. The type of mobility that was named as ‘credit mobility’ in the past is not directly related to the short mobility that increased thanks to the Turing funding.

An important obstacle to student mobility and to the implementation of Turing has been the need of obtaining a visa to enter foreign destinations. This requirement came with Brexit and presented important difficulties at different times due to the lack of experience of all those involved, including

the respective Embassies. Once again, this was a factor detracting students from mobility when the visa process took longer than expected or was refused.

On the positive side, Turing allowed mobility to destinations that were not included in Erasmus and, in most cases, were only accessible to those who could afford the expenditure. Although Turing has not increased the number of countries receiving students, the main difference is that many students could now receive funding for their international experience, which could incentivise further mobility.

Widening participation is one of the main objectives of the scheme. From the very beginning, levelling up was one of the four main objectives to support social mobility and widen participation across the UK. To achieve this objective, students qualifying as widening participation received an amount covering travel costs and a higher allocation to cover the expenses of stay. Also, the promotion of widening participation was one of the main criteria used at the selection process. The reality was not that positive and the figures available show that the number of students qualifying as widening participation was not as high as hoped. According to the official figures released by the DfE for 2021-22, 39% of the Turing students qualified as widening participation. They represented 41% in England, 19% in Scotland, 51% in Wales and 22% in Northern Ireland: this disparity is difficult to explain. Positive and negative views have been expressed about the results of the policy. Some of the criticism has been around the assumption that widening participation students would not be able to pay the fees at the host institution, when there are no fees in case of exchanges, or that those students do not have the language skills required to go abroad, which is something that could equally apply to a large number of students who are not widening participation. The successful projects for implementation in 2022-23 included 51% of widening participation students, a percentage that rose to 54% for 2023-24. A first analysis has been made by Brooks and Waters²⁶ based on interviews to institutions and their respective websites advertising the Turing scheme. Unfortunately, the actual data is not available, and the success of the policy cannot be sufficiently assessed yet. However, any attempt to increase the scope of students going abroad is always positive.

An element that has been made more evident with Turing is the involvement of third parties. These organisations, such as Knowledge for Change, the Mighty Roar, Operation Wallacea, Pagoda Projects, Play Action International, Think Pacific or Work the World, to name some, have been organising visits for young people during the summer or for gap years. They normally work with the universities for promotional activities and to find placements that in some cases, as for Nursing students, are part of their degree or, simply, represent an extra activity that can be attractive for students. Such mobility would be much more difficult without these organisations because the universities often possess limited capacity to organise for large cohorts of students going to the same place or to different countries. Mobility is always to developing countries and that has improved the opportunities to go to countries such as Fiji, St Lucia or Uganda and, to a certain extent, Vietnam, Sri Lanka or Tanzania. All of them increased the number of students visiting in the first two years of Turing.

In summary, the first two years of the Turing programme has offered some positives, but also some negatives. It cannot be compared with the Erasmus programme other than from a quantitative perspective because the objectives are different and the results have, so far, also shown deep differences. Turing is changing the concept of study or work abroad in the United Kingdom and has incorporated activities more related to volunteering than to the more traditional student mobility organised from an institutional perspective. A matter of concern can be the high level of institutions who opted not to participate in the scheme or whose application was not supported. The consequence can be a loss of interest in student mobility at the institution and, consequently, no access to a stay abroad for their students. The difficulties created by the application process and the results of the selection can discourage institutions in the coming years. A total of 152 institutions sent students abroad in 2013-14. The number had grown to 158 in 2017-18. In contrast, the number of institutions

sending students abroad with Turing started in 134 in 2021-22, decreased to 126 in 2023-24 and went down again to only 122 in 2023-24. The reduction of the funding experienced in three years and a decreasing number of institutions involved can only reduce the levels of student mobility and go against the intentions of the Turing scheme.

Considering the figures stated of very low intake of mobility when comparing with the total number of students in higher education, any support to increase the numbers should bear in mind not only the quality (never to be ignored) but also the quantity. It is important to remember that there were just over 35,000 students who went abroad in 2022-23, but this figure represents 5,000 fewer students who went abroad than in 2017-18.

The final words must be to pay homage to all the colleagues who make student mobility possible at the higher education institutions of the UK from a central level or a faculty or school. With increasing pressure from their institutions, cuts in available resources and greater difficulties in the procedures to obtain funds, they managed to promote mobility, meet the wishes and needs of many students and comply with internal and external regulations. With funding or without, a huge amount of work is required to send the students abroad and this work is not always as recognised as it should be.

NOTES

¹ Fox, O., Beech, S.E. (2024) International student mobility options following Brexit: An analysis of the geneses of Britain's Turing scheme, *Population and Place*, 30 (<https://onlinelibrary.wiley.com/doi/full/10.1002/psp.2727>).

² The Guardian: *UK students lose Erasmus membership in Brexit deal* (24/12/2020) available at <https://www.theguardian.com/education/2020/dec/24/uk-students-lose-erasmus-membership-in-brexit-deal>.

³ Stine, Jon: *UK quit Erasmus because of Brits' poor language skills* (03/04/2024) accessible at <https://www.politico.eu/article/brits-poor-language-skills-made-erasmus-scheme-too-expensive-says-uk/>

⁴ The Guardian (08/03/2020) *Quitting EU Erasmus scheme would 'blow a hole' in UK economy* accessible at <https://www.theguardian.com/education/2020/mar/08/quitting-eu-erasmus-scheme-would-blow-a-hole-in-uk-economy>

⁵ <https://theconversation.com/the-turing-scheme-was-supposed-to-help-more-disadvantaged-uk-students-study-abroad-but-they-may-still-be-losing-out-220956> and [Turing funding comes "too late" to widen participation in study abroad](#).

⁶ [CBP-9141.pdf](#)

⁷ <https://www.gov.uk/government/publications/turing-scheme-funding-outcomes-2021-to-2022/turing-scheme-funding-outcomes-for-the-2021-to-2022-academic-year>

⁸ Turing Scheme: Year 1 evaluation. Research report (https://assets.publishing.service.gov.uk/media/6583029523b70a0013234d29/Turing_Scheme_year_1_evaluation.pdf).

⁹ Some of the content of the old website is available at <https://www.gov.uk/government/collections/turing-scheme>

¹⁰ Turing Scheme funding outcomes for the 2022 to 2023 academic year (DfE 13/03/2025) <https://www.gov.uk/government/publications/turing-scheme-funding-outcomes-2022-to-2023/turing-scheme-funding-outcomes-for-the-2022-to-2023-academic-year>

¹¹ Capita to run replacement for Erasmus exchange scheme, raising fresh fears for students (The Independent, 08/12/21) <https://www.independent.co.uk/news/uk/politics/brexit-erasmus-students-capita-turing-b1972316.html>

¹² <https://webarchive.nationalarchives.gov.uk/ukgwa/20240806145014/https://www.turing-scheme.org.uk/funding-opportunities/funding-results-2021-to-2022-demographics/>

¹³ <https://www.hesa.ac.uk/data-and-analysis/students/where-from>

¹⁴ Student visas for the US: what has changed under Covid-19? (THE, 07/01/2022) <https://www.timeshighereducation.com/student/advice/student-visas-us-what-has-changed-under-covid-19>

¹⁵ Muradás-Taylor, B. (2023). Undergraduate language programmes in England: A widening participation crisis. *Arts and Humanities in Higher Education*, 22(3), 322-342. <https://doi.org/10.1177/14740222231156812>

¹⁶ https://ec.europa.eu/assets/eac/education/tools/iscedf/codes_en.htm

¹⁷ Carbonell, Joan-Anton (2025) The (declining) evolution of outgoing student mobility in the United Kingdom (from 2013-14 to 2022-23)

¹⁸ <https://www.hesa.ac.uk/news/16-01-2020/sb255-higher-education-student-statistics/subjects>

¹⁹ Scotland needs Erasmus, not Britain's poor replacement (Politico, 29/01/2021)
<https://www.politico.eu/article/scotland-erasmus-uk-turing-scheme-brexit-europe-eu/>

²⁰ New International Learning Exchange programme to make good the loss of Erasmus+ (Press release, 21/03/2021) <https://www.gov.wales/new-international-learning-exchange-programme-make-good-loss-erasmus>

²¹ Minister Harris announces mobility funding for Northern Ireland higher education students (Press release, 27/07/2023) <https://www.gov.ie/en/department-of-further-and-higher-education-research-innovation-and-science/press-releases/minister-harris-announces-mobility-funding-for-northern-ireland-higher-education-students/>

²² <https://www.gov.uk/government/publications/turing-scheme-funding-outcomes-2021-to-2022/turing-scheme-funding-outcomes-for-the-2021-to-2022-academic-year>

²³ <https://www.gov.uk/government/collections/turing-scheme>

²⁴ The British Academy (November 2023) The Turing Scheme. Understanding impacts and implications
<https://www.thebritishacademy.ac.uk/publications/turing-scheme-understanding-impacts-and-implications/>

²⁵ Jack, Patrick (14/10/2024) University interest in 'suboptimal' Turing scheme wanes
<https://www.timeshighereducation.com/news/university-interest-suboptimal-turing-scheme-wanes>

²⁶ Brooks, R and Waters, Johanna: An analysis of the UK's Turing Scheme as a response to socio-economic and geo-political challenges. Higher Education (2024) 88:1809–1827 <https://doi.org/10.1007/s10734-023-00995-0>